283 research outputs found

    Characterization and Modeling of High Power Microwave Effects in CMOS Microelectronics

    Get PDF
    The intentional use of high power microwave (HPM) signals to disrupt microelectronic systems is a substantial threat to vital infrastructure. Conventional methods to assess HPM threats involve empirical testing of electronic equipment, which provides no insight into fundamental mechanisms of HPM induced upset. The work presented in this dissertation is part of a broad effort to develop more effective means for HPM threat assessment. Comprehensive experimental evaluation of CMOS digital electronics was performed to provide critical information of the elementary mechanisms that govern the dynamics of HPM effects. Results show that electrostatic discharge (ESD) protection devices play a significant role in the behavior of circuits irradiated by HPM pulses. The PN junctions of the ESD protection devices distort HPM waveforms producing DC voltages at the input of the core logic elements, which produces output bit errors and abnormal circuit power dissipation. The dynamic capacitance of these devices combines with linear parasitic elements to create resonant structures that produce nonlinear circuit dynamics such as spurious oscillations. The insight into the fundamental mechanisms this research has revealed will contribute substantially to the broader effort aimed at identifying and mitigating susceptibilities in critical systems. Also presented in this work is a modeling technique based on scalable analytical circuit models that accounts for the non-quasi-static behavior of the ESD protection PN junctions. The results of circuit simulations employing these device models are in excellent agreement with experimental measurements, and are capable of predicting the threshold of effect for HPM driven non-linear circuit dynamics. For the first time, a deterministic method of evaluating HPM effects based on physical, scalable device parameters has been demonstrated. The modeling presented in this dissertation can be easily integrated into design cycles and will greatly aid the development of electronic systems with improved HPM immunity

    EMITTANCE MEASUREMENTS OF THE JEFFERSON LAB FREE ELECTRON LASER USING OPTICAL TRANSTION RADIATION

    Get PDF
    Charged particle accelerators, such as the ones that power Free Electron Lasers (FEL), require high quality (low emittance) beams for efficient operation. Accurate and reliable beam diagnostics are essential to monitoring beam parameters in order to maintain a high quality beam. Optical Transition Radiation Interferometry (OTRI) has shown potential to be a quality diagnostic that is especially useful for high brightness electron beams such as Jefferson Labs FEL energy recovery linac. The purpose of this project is to further develop OTRI beam diagnostic techniques. An optical system was designed to make beam size and divergence measurements as well as to prepare for experiments in optical phase space mapping. Beam size and beam divergence measurements were taken to calculate the emittance of the Jefferson Lab FEL. OTRI is also used to separate core and halo beam divergences in order to estimate core and halo emittance separately

    Social workers and acquired brain injury: A systematic review of the current evidence-base

    Get PDF
    Social work plays an important role in the assessment and treatment of people with acquired brain injury. Acquired brain injury is a complex and highly prevalent condition which can impact on cognitive, emotional and social domains. As acquired brain injury is a hidden disability it can be misdiagnosed or classified as another condition entirely. We sought to systematically explore the evidence base to examine how social workers have been prepared to work with their clients with brain injury. Employing six electronic databases (Social Policy & Practice, Web of Science, Scopus, PubMed, PsycINFO, CINAHL Plus) we reviewed 1071 papers. After applying eligibility criteria 17 papers were included in this review. We utilised standardised data extraction and quality appraisal tools to assess all included papers. Following appraisal, 9 papers were judged as possessing high methodological quality whilst 8 were judged as medium. Employing narrative synthesis, we identified four themes which captured the key findings of these papers. Themes were named as (i) advocacy and social work (ii) training and multidisciplinary team working (iii) inclusion of social networks and (iv) societal barriers. In order to meet their statutory responsibilities to practice safely, social workers must receive training in how to identify ABI and develop understanding of its consequences and subsequent need for provision. Social workers are also in a unique position to advocate for their clients and should make every effort to ensure their needs are met

    Implementation of a rapid learning platform: predicting 2-year survival in laryngeal carcinoma patients in a clinical setting

    Get PDF
    Background and Purpose To improve quality and personalization of oncology health care, decision aid tools are needed to advise physicians and patients. The aim of this work is to demonstrate the clinical relevance of a survival prediction model as a first step to multi institutional rapid learning and compare this to a clinical trial dataset. Materials and Methods Data extraction and mining tools were used to collect uncurated input parameters from Illawarra Cancer Care Centre\u27s (clinical cohort) oncology information system. Prognosis categories previously established from the Maastricht Radiation Oncology (training cohort) dataset, were applied to the clinical cohort and the radiotherapy only arm of the RTOG-9111 (trial cohort). Results Data mining identified 125 laryngeal carcinoma patients, ending up with 52 patients in the clinical cohort who were eligible to be evaluated by the model to predict 2-year survival and 177 for the trial cohort. The model was able to classify patients and predict survival in the clinical cohort, but for the trial cohort it failed to do so. Conclusions The technical infrastructure and model is able to support the prognosis prediction of laryngeal carcinoma patients in a clinical cohort. The model does not perform well for the highly selective patient population in the trial cohort

    A phantom assessment of achievable contouring concordance across multiple treatment planning systems

    Get PDF
    In this paper, the highest level of inter- and intra-observer conformity achievable with different treatment planning systems (TPSs), contouring tools, shapes, and sites have been established for metrics including the Dice similarity coefficient (DICE) and Hausdorff Distance. High conformity values, e.g. DICEBreast_Shape = 0.99 ± 0.01, were achieved. Decreasing image resolution decreased contouring conformity

    Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes.

    Get PDF
    Ketosis, the metabolic response to energy crisis, is a mechanism to sustain life by altering oxidative fuel selection. Often overlooked for its metabolic potential, ketosis is poorly understood outside of starvation or diabetic crisis. Thus, we studied the biochemical advantages of ketosis in humans using a ketone ester-based form of nutrition without the unwanted milieu of endogenous ketone body production by caloric or carbohydrate restriction. In five separate studies of 39 high-performance athletes, we show how this unique metabolic state improves physical endurance by altering fuel competition for oxidative respiration. Ketosis decreased muscle glycolysis and plasma lactate concentrations, while providing an alternative substrate for oxidative phosphorylation. Ketosis increased intramuscular triacylglycerol oxidation during exercise, even in the presence of normal muscle glycogen, co-ingested carbohydrate and elevated insulin. These findings may hold clues to greater human potential and a better understanding of fuel metabolism in health and disease
    • …
    corecore